
10

Security Primitives for Reconfigurable
Hardware-Based Systems

TED HUFFMIRE, TIMOTHY LEVIN, THUY NGUYEN, and CYNTHIA IRVINE
Naval Postgraduate School
BRETT BROTHERTON
Special Technologies Laboratory
GANG WANG
Intuit
TIMOTHY SHERWOOD
University of California, Santa Barbara
and
RYAN KASTNER
University of California, San Diego

Computing systems designed using reconfigurable hardware are increasingly composed using a
number of different Intellectual Property (IP) cores, which are often provided by third-party ven-
dors that may have different levels of trust. Unlike traditional software where hardware resources
are mediated using an operating system, IP cores have fine-grain control over the underlying re-
configurable hardware. To address this problem, the embedded systems community requires novel
security primitives that address the realities of modern reconfigurable hardware. In this work, we
propose security primitives using ideas centered around the notion of “moats and drawbridges.”
The primitives encompass four design properties: logical isolation, interconnect traceability,
secure reconfigurable broadcast, and configuration scrubbing. Each of these is a fundamental

This research was funded in part by National Science Foundation Grant CNS-0524771, NSF
Career Grant CCF-0448654, and the SMART Defense Scholarship for Service.
Authors’ addresses: T. Huffmire, T. Levin, T. Nguyen, and C. Irvine, Department of Computer
Science, Naval Postgraduate School, Monterey, CA 93943; email: {tdhuffmi, televin, tdnguyen,
irvine}@nps.edu; B. Brotherton, Special Technologies Laboratory, Santa Barbara, CA 93111;
email: brett.brotherton@gmail.com; G. Wang, Intuit, San Diego, CA 92122; email: Gang Wang@
intuit.com; T. Sherwood, Department of Computer Science, University of California, Santa Bar-
bara, CA 93106; email: sherwood@cs.ucsb.edu; R. Kastner, Department of Computer Science and
Engineering, University of California, San Diego, La Jolla, CA 92093; email: kastner@cs.ucsd.edu.
c©2010 Association for Computing Machinery. ACM acknowledges that this contribution was au-

thored or co-authored by a contractor or affiliate of the [U.S.] Government. As such, the Govern-
ment retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or direct commer-
cial advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1936-7406/2010/05-ART10 $10.00 DOI: 10.1145/1754386.1754391.

http://doi.acm.org/10.1145/1754386.1754391.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Security Primitives for Reconfigurable Hardware-Based Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Department of Computer
Science,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

35

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

10: 2 · T. Huffmire et al.

operation with easily understood formal properties, yet they map cleanly and efficiently to a wide
variety of reconfigurable devices. We carefully quantify the required overheads of the security
techniques on modern FPGA architectures across a number of different applications.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Virtual
memory; B.7.1 [Integrated Circuits]: Types and Design Styles—Gate arrays; B.7.2 [Integrated
Circuits]: Design Aids—Placement and routing; C.1.3 [Processor Architectures]: Other Archi-
tecture Styles—Adaptable architectures; D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems; K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication

General Terms: Design, Security

Additional Key Words and Phrases: Field Programmable Gate Arrays (FPGAs), Advanced
Encryption Standard (AES), memory protection, separation, isolation, controlled sharing, hard-
ware security, reference monitors, execution monitors, enforcement mechanisms, security policies,
static analysis, security primitives, Systems-on-a-Chip (SoCs)

ACM Reference Format:
Huffmire, T., Levin, T., Nguyen, T., Irvine, C., Brotherton, B., Wang, G., Sherwood, T., Kastner, R.
2010. Security primitives for reconfigurable hardware-based systems. ACM Trans. Reconfig.
Technol. Syst. 3, 2, Article 10 (May 2010), 35 pages. DOI = 10.1145/1754386.1754391.
http://doi.acm.org/10.1145/1754386.1754391.

1. INTRODUCTION

While the economics of the semiconductor industry has helped to drive the
widespread adoption of reconfigurable devices in a variety of critical systems,
it is not yet clear that such devices and the design flows used to configure them
are trustworthy. Reconfigurable systems are typically designed using a collec-
tion of Intellectual Property (IP) cores in order to save both time and money.
Ideally each of these cores would be formally specified, tested, and verified by
a highly trusted party. However, in reality, this is rarely the case. Unlike
uniprocessor software development, where the programming model remains
fixed as transistor densities increase, FPGA developers must explicitly take
advantage of denser devices through changes in their design. Given that em-
bedded design is driven in large part by the demand for new features and the
desire to exploit technological scaling trends, there is a constant pressure to
mix everything on a single chip: from the most critical functionality to the lat-
est fad. Each of these cores has explicit control of the reconfigurable device
(i.e., without the benefit of an operating system or other intermediate layer),
and it is possible that this mixing of trust levels could be exploited by an ad-
versary with access to any point in the design flow (including design tools or
implemented cores). In an unrestricted design flow, even answering the ques-
tion: “Are these two cores capable of communication?” is not simple.

Consider a more concrete example, a cryptographic system that performs
local authentication to encrypt and decrypt network traffic. This system is de-
signed using two soft-processor cores—one to interface with an authentication
device (e.g., fingerprint reader), the other to control the ethernet IP core—and
an AES encryption engine used by both of the processor cores. These cores are
all implemented using a single FPGA. Further details about this system can
be found in Huffmire et al. [2008], and in Section 4.3.1. Each of three cores
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 3

requires access to off-chip memory to store and retrieve data. How can we en-
sure that the encryption key for one of the processors cannot be obtained by
the other processor by either reading the key from external memory or directly
from the encryption core itself? There is no virtual memory on these systems,
and after being run through an optimizing CAD tool the resulting circuit is an
obfuscated network of gates and wires. To prevent the key from being read
directly from the encryption core itself, we must find some way to isolate the
encryption engine from the other cores at the gate level. To protect the key
in external memory, we need to implement a memory protection module, we
need to ensure that each and every memory access goes through this monitor,
and we need to guarantee that all cores are communicating only through their
specified interfaces. To confirm that these properties hold at even the lowest
levels of implementation (after all the design tools have finished their transfor-
mations), we argue that slight modifications in the design methods and tools
can enable the rapid static verification of finished FPGA bitstreams. The tech-
niques presented in this article are steps towards a cohesive reconfigurable
system design methodology that explicitly supports cores with varying levels
of trust and criticality, all sharing a single physical device.

Specifically, we present the idea of moats and drawbridges, a statically veri-
fiable method to provide isolation and physical interface compliance for multi-
ple cores on a single reconfigurable chip. The key idea of the moat is to provide
logical and physical isolation by separating cores into different areas of the
chip such that this separation can be easily verified. Given that we need to
interconnect our cores at the proper interfaces (drawbridges), we introduce in-
terconnect tracing as a method for verifying that interfaces carrying sensitive
data have not been tapped or routed improperly to other cores or I/O pads.
Furthermore, we present a technique, configuration scrubbing, for ensuring
that remnants of a prior core do not linger following a partial reconfiguration
of the system. Once we have a set of drawbridges, we need to enable legal in-
tercore communication. We describe two secure reconfigurable communication
architectures, and we quantify the implementation trade-offs between them in
terms of complexity of analysis and performance.

In this article, we extend our preliminary work [Huffmire et al. 2007] to
incorporate an alternative form of moats that does not require “dead” areas or
the disabling of longer routing segments. Rather than using physical/spatial
separation, this improved form of moats uses logical separation. We compare
these two versions of moats to determine which is optimal.

2. SEPARATION

The concepts of isolation and separation are fundamental to computer secu-
rity. Saltzer and Schroeder [1974] define complete isolation as a “protection
system that separates principals into compartments between which no flow
of information or control is possible.” However, no system can function if all
of its components are completely isolated from each other. Therefore, a sep-
aration technique that allows the controlled sharing of data among isolated
components is needed. In a system with a mandatory access control policy, we
need to isolate equivalence classes of objects (e.g., all top secret objects) and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 4 · T. Huffmire et al.

control their interaction (e.g., with unclassified objects). To achieve separation
in FPGA systems, we propose a solution where moats provide the isolation,
and drawbridges provide a means of controlled sharing.

Consider again the aforementioned cryptographic network computing sys-
tem with two soft-processor cores and an AES encryption engine sharing a
single FPGA. Each of these three cores requires access to off-chip memory to
store and retrieve potentially sensitive data. How can we ensure that the en-
cryption key for one of the processors cannot be obtained by the other processor
by either reading the key from external memory or directly from the encryp-
tion core itself? This system consists of two compartments with an AES core
that is shared between the two domains. One domain (gray) contains one of
the processors as well as an RS-232 (serial) interface used to communicate
with the local authentication device. The other domain (black) contains the
other processor as well as an Ethernet interface. All of these components are
connected over a shared bus. Since RS-232 is a local connection, the domain
containing the serial interface can serve a highly trusted function, such as bio-
metric authentication with an iris scanner or fingerprint reader.

3. RECONFIGURABLE SYSTEMS

We are seeing reconfigurable devices emerge as the flexible and high-
performance workhorses inside a variety of high-performance embedded com-
puting systems [Bondalapati and Prasanna 2002; Compton and Hauck 2002;
DeHon and Wawrzynek 1999; Kastner et al. 2004; Mangione-Smith et al. 1997;
Schaumont et al. 2001]. To understand the potential security issues, we de-
scribe a modern device, a typical design flow, and the potential threats that
our techniques are expected to handle.

3.1 The Composition Problem

Increasingly, soft-processors and other IP cores1 are composed to implement
the desired functionality of a reconfigurable system. Cores are often purchased
from third-party vendors, generated automatically as the output of some de-
sign tool, or even gathered from open-source repositories. While individual
cores such as encryption engines can be formally verified [Lewis and Martin
2003], a malicious piece of logic or compromised design tool may be able to ex-
ploit low-level implementation details to quietly eavesdrop on or interfere with
trusted logic. As a modern design may implement millions of logical gates with
tens of millions of interconnections, the goal of this research is to explore de-
sign techniques that will allow the inclusion of both trusted and untrusted
cores on a single chip, without the requirement that expensive static verifica-
tion be employed over the entire design.

3.2 Reconfigurable Hardware Security

The growing popularity of reconfigurable logic has forced practitioners to be-
gin to consider security implications, but as of yet there is no set of best design

1Since designing reconfigurable modules is costly, companies have developed several schemes to
protect this valuable intellectual property, which we discuss in Section 8.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 5

Fig. 1. FPGA design flows: Distinct cores with different provenance trust properties occupy
the same chip. Reconfigurable logic, hard- and soft-processor cores, blocks of on-chip SRAM and
BRAM, and other IP cores all share the FPGA and the same off-chip memory.

practices to guide their efforts. Furthermore, the resource-constrained nature
of embedded systems is perceived to be a challenge to providing a high level
of security [Kocher et al. 2004]. In this article we describe a set of low-level
methods that (a) allow effective reasoning about high-level system properties,
(b) can be supported with minimal changes to existing tool flows, (c) can be
statically verified with little effort, (d) incur relatively small area and perfor-
mance overheads, and (e) can be used with commercial off-the-shelf parts. The
advantage of developing security primitives for FPGAs is that we can immedi-
ately incorporate our primitives into the reconfigurable design flow today, and
we are not dependent on the often reluctant industry to modify the design of
their silicon.

3.3 Mixed-Trust Design Flows

Figure 1 shows a few of the many different design flows used to compose a sin-
gle modern embedded system. The reconfigurable implementation relies on a
large number of sophisticated software tools that have been created by many
different people across many organizations. IP cores, such as an AES core, can
be distributed in the form of Hardware Description Language (HDL), netlists,
or a bitstream. These cores can be designed by hand, or they can be automat-
ically generated by computer programs. For example, the Xilinx Embedded
Development Kit (EDK) [Xilinx, Inc. 2006] software tool generates custom mi-
croprocessors cores and compiles C code to these soft or hard microprocessors.
Accel DSP [Hill 2006] translates MATLAB [The Math Works, Inc. 2006] algo-
rithms into HDL, logic synthesis translates this HDL into a netlist, physical
synthesis converts this netlist into a bitstream, with the final result being an
implementation of a synthesized IP processing core.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 6 · T. Huffmire et al.

Given that all of these different design tools produce a set of interoperating
cores, you can only trust your final system as much as you trust your least-
trusted design path. A separation mechanism is needed to protect sensitive
data from being compromised. For example, we must prevent secret keys and
plaintext from being extracted from a crypto processing core.

3.4 Assumptions, Threats, and Scope

Many critical hardware components are manufactured in foundries that are
located in countries where the cost to build and run a foundry is competitive.
The problem of hardware subversion is a serious concern that has led to the es-
tablishment of the DARPA Trust in Integrated Circuits Program [Adee 2008],
which applies reverse engineering to circuits to detect malicious circuity inten-
tionally added to test chips by a “red team.” A very small amount of extra logic
can give an attacker full control of a system.

We are not attempting to solve the trusted foundry problem. Nor are we
trying to solve the problem of subverted design tools, which is another very
difficult problem in which the attacker has a huge advantage. The subversion
of design tools could easily result in malicious hardware being loaded onto the
device, and security is not yet a primary goal of the major design tool manu-
facturers.

Rather, we are proposing a method by which small trusted cores, developed
with trusted tools (perhaps using in-house tools which are not fully optimized
for performance2), can be safely combined with untrusted cores.

Our method works by putting constraints on the layout function of the de-
sign tools so that the design obeys a separation policy. In order for our method
to be effective, the tools must be used properly, and the policy must be correct.
Ensuring the correctness of the policy can be achieved using formal methods.

3.5 Motivating Examples

Encryption. We have been motivating our discussion so far with the exam-
ple of a networked cryptographic authentication system to send/receive en-
crypted data from the Internet using local authentication [Huffmire et al.
2008]. In general, cryptographic systems contain sensitive data (both the en-
crypted data and the cryptographic keys) that must be protected. The goal of
our methods is to ensure that this sensitive data does not fall into the wrong
hands. In our example, this means that it should not be possible to read any
unauthorized key or data either from external memory or directly from the
encryption core itself.

Avionics. Isolation has long been a fundamental requirement in the design
of avionics. Consider the example of avionics in military aircraft [Weissman
2003] in which sensitive targeting data is processed on the same device as
less sensitive maintenance data. In such military hardware systems, certain

2FPGA manufacturers such as Xilinx provide signed cores that can be trusted by embedded de-
signers, while those freely available cores obtained from sources such as OpenCores are considered
to be less trustworthy. The development of a trusted tool chain or a trusted core is beyond the scope
of this article.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 7

processing components are “cleared” for different levels of data, and proper
separation of these components is needed to protect sensitive data. Isolation
in avionics is also required because an aircraft must continue to fly even if one
component malfunctions. To achieve fault containment, avionics are designed
with a federated architecture [Rushby 1999]. However, since airplane designs
must minimize weight, power, cooling, and maintenance costs, it is impracti-
cal to have a separate device for every function. Therefore, avionics was the
impetus for the development of the first separation kernels [Rushby 1984]. A
separation kernel isolates multiple applications executing on a processor and
facilitates the controlled sharing of data among processes.

Video surveillance. Consider a video surveillance system that has been de-
signed to protect privacy. Intelligent video surveillance systems can iden-
tify human behavior that is potentially suspicious, and this behavior can be
brought to the attention of a human operator to make a judgment [Niu et al.
2004; Jain et al. 2006]. For example, IBM’s PeopleVision project has been de-
veloping such a video surveillance system [Senior et al. 2003] that protects the
privacy of individuals by blurring their faces depending on the credentials of
the viewer (e.g., security guards versus maintenance technicians). FPGAs are
a natural choice for any streaming application because they provide deep reg-
ular pipelines of computation, with no shortage of parallelism. Implementing
such a system would require at least three cores on the FPGA: a video inter-
face for decoding the video stream, a redaction mechanism for blurring faces
in accordance with a policy, and a network interface for sending the redacted
video stream to the security guard’s station. Each of these modules would need
buffers of off-chip memory to function, and our methods could prevent sensi-
tive information from being shared between modules improperly (e.g., directly
between the video interface and the network). While our techniques could not
verify the correct operation of the redaction core, they could ensure that only
the connections necessary for legal communication between cores are made.

Now that we have described a high-level picture of the problem we are at-
tempting to address, we present our two concepts, moats and drawbridges,
along with the details of how each maps to a modern reconfigurable device.
In particular, for each approach we specify the threats that it addresses, the
details of the technique and its implementation, and the overheads involved
in its use. Then, in Section 7, we show how these low-level protection mecha-
nisms can be used in the implementation of a higher-level memory protection
primitive.

4. PHYSICAL ISOLATION WITH MOATS

As discussed in Section 3, a strong notion of isolation is lacking in current
reconfigurable hardware design flows, yet one is needed to be certain that cores
are not snooping on or interfering with each other. Without some assurances
of isolation, it is very difficult to prevent a connection between two cores from
being established.

In general, physical synthesis tools use performance as an objective function
in their optimization strategy, which can result in the logical elements and the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 8 · T. Huffmire et al.

Fig. 2. A simple two-core system mapped onto a small FPGA. Normally, the design tools will place
the cores in a manner that optimizes performance, which often leads to the intertwined situation
shown here. Our method constrains the design tools to spatially separate the cores.

interconnections of two cores becoming intertwined. Figure 2 makes this prob-
lem more clear. The left-hand of Figure 2 shows the placement of a design with
two small cores (soft processors) mapped onto an FPGA. The two processors
overlap significantly in several areas of the chip. The difficulty of this problem
is made more clear by the zoom-in on the right of Figure 2. The zoom-in shows
a single switchbox, the associated LUTs (to the right of the switchbox), and all
the wires that cross through that one small portion of the chip. The largest
current FPGAs contain on the order of 20,000 to 30,000 switchboxes.

Isolation is required in order to protect the confidentiality and integrity of a
core’s data, and it helps to prevent interference with a core’s functionality. In
the following, we describe a design methodology for ensuring isolation of an IP
core on a FPGA. We utilize a static check of the bitstream to verify that the
cores are isolated.

4.1 Building Moats

Moats are a novel method of enhancing the security of FPGA systems, provid-
ing physical isolation of cores while requiring only small changes to the design
tools. We propose two approaches to building moats. For both methods, we
require that the cores be contained within distinctly rectangular regions. The
ability to restrict cores to a rectangular area is a feature in today’s FPGA tool
chains, such as the Xilinx PlanAhead tool.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 9

The first approach, which we call the gap method, involves surrounding
each core with a “dead” area (i.e., a moat) while restricting the design to only
use routing segments that are smaller than the length of the moat. We show
that this approach ensures isolation of the cores. With the gap method, we are
actually changing the architecture of the FPGA fabric, eliminating some kinds
of routing segments.

In the second approach, which we call the inspection method, we show how
to reduce or eliminate the moat by performing smart checking of the routing
segments near the border of the core. Unlike the gap method, there is no need
to change the design of the FPGA fabric. With the inspection method, we can
utilize segments of any size except for those segments that lie close to the bor-
der of the isolated core. We describe the type of static analysis that is required
to check the switchboxes near the border to determine if any connections
violate the isolation of the core. For both the gap and inspection methods, a
core can only communicate with the outside world via a precisely defined path
called a “drawbridge,” which we explain in Section 5. In this section, we pro-
vide analysis of the gap and inspection methods to determine which technique
is better.

We note that the gap method is a physical/spatial isolation technique, while
the inspection method is a logical isolation technique. We developed the in-
spection method after we developed the gap method.3 Evolution from physical
to logical isolation is a common design pattern in software. For example, sep-
aration kernels evolved out of prior isolation techniques that used separate
computers [Rushby 1981].

4.1.1 The Gap Method. The gap method provides isolation by surrounding
each core of interest with a moat. In other words, we disable the switchboxes
outside the border of the core.

Modern FPGA architectures use staggered, multiple-track routing seg-
ments. For example, the Virtex platform supports track segments with lengths
1, 2, and 6, where the length is determined by measuring the number of Config-
uration Logic Blocks (CLBs) the segment crosses. A length 6 segment will span
6 CLBs, allowing a more direct connection by skipping unnecessary switch-
boxes along the routing path. Moreover, many FPGA architectures provide
“longline” segments which span the complete row or column of the CLB array.

Figure 3 illustrates the gap technique of constructing moats. If we allow
the design tool to make use of segment lengths of one and two, the moat must
have a width of at least two to ensure isolation (otherwise signals could hop the
moats because they would not require a switchbox in the moat). The following
two properties are sufficient to statically check that a moat is sound:

(1) The target core is completely surrounded by moat of width at least w.
(2) The target core does not make any use of routing segments longer than

length w.

3Our paper in IEEE Symposium on Security and Privacy only discusses the gap method [Huffmire
et al. 2007].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 10 · T. Huffmire et al.

Fig. 3. Gap method: The gap method of building moats uses “dead” areas between the cores
for isolation. In this example, routing segments can either span one or two switchboxes, which
requires the moat to have a width of two. Since the delay of a connection depends on the number
of switchboxes it must pass through, restricting the length of segments reduces performance, but
the moats can be smaller. Allowing longer segments improves performance, but the moats must
be wider, which wastes more area.

Both of these properties are easy to verify on an FPGA. We can tell if a
switchbox is part of a moat by checking that it is completely dead, that is, all
the routing transistors are programmed to be disconnected. We can check the
second property by examining all the switches that connect to segments with
length greater than w and verifying that they are turned off. This requires
knowledge about the bitstream, for example, we must know the location of the
configuration bit for each switch. All of the knowledge that we require is avail-
able using the JBits API [Guccione et al. 1999]. Although Xilinx has replaced
JBits with XDL for its latest models, our ideas are easy to extend, and we
argue that it should not be difficult to target them to any FPGA given suffi-
cient knowledge about the bitstream. XDL, a text format, is similar to JBits
but without the GUI interface. The XDL file contains all of the programmable
elements, including vertical carry chains and horizontal sum-of-products.

4.1.2 The Inspection Method. By employing a smarter static checking
scheme, we can reduce the size of the moat or even eliminate it altogether.
The key insight behind this technique relies on the fact that we can utilize a
segment that is longer than the moat width, as long as that segment is located
far enough away from the border of the IP core. For example, assume that we
have a design with moat width of two, and the core’s dimension is 20 × 20. The
gap technique requires that we not use any segment longer than two. How-
ever, there is no reason why the core could not use a hex segment that resides
in the middle of the core for routing internal signals, for example, a segment
from (10, 10) to (16, 10).

With the inspection method, we can have smaller moats than with the gap
method, and we can even have no gap at all, which we call a seamless moat.
Without a sufficiently large gap, we must use static analysis to ensure that
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 11

Fig. 4. Inspection method: The inspection method of building moats does not require a large
gap (or any gap at all, which we call a “seamless” moat). Instead, the design tools check along
the boundary for illegal connections. Since a seamless moat has no gap between the cores, all
connections must be traced near the border: single lines (1), double lines (2), hex lines (6), and
long lines (L). The “deeper” we go into the center of the core, the fewer connections that must be
checked.

illegal connections do not cross the boundary. Consider a seamless moat: a
connection that is one CLB away from the border of a core could connect to
a neighboring core through the use of a double, hex, or long line. A single
line, however, could not reach a neighboring core unless it was on the border
of the core. Therefore, only a subset of the connections within a core must be
examined, a fact that we can exploit to limit the amount of static checking.

Figure 4 shows the subset of connections that must be checked in order to
verify the design for a seamless moat. The “deeper” we go into the center of
the core, the fewer connections that must be checked. For example, even with
seamless moats, we don’t have to worry about checking single lines once we are
at least one CLB away from the boundary. We don’t have to check double lines
once we are at least two CLBs away from the boundary. We don’t have to check
hex lines once we are at least six CLBs away from the boundary. Long lines
must always be checked, as they span the full height or width of the device.

The smaller the width of the moat, the more checking we must do. The
depth (in CLBs) at which a connection must be searched is a function of the
moat width M and is defined as

D(L, M) =
{

0 if L < M,
L − M if L ≥ M,

(1)

where D is the search depth, L is the length of the connection (1, 2, or 6), and
M is the size of the moat. Using this equation, it is evident that a moat width
of one eliminates the need to check for single line connections inside of cores.
Because there is a minimum of one CLB separating all cores in the design,
any connection of length one cannot span from one core to another. Even if the
connection is on the border of the core it will have to use some other connection
inside the moat to go any further, so this connection will be found during the
verification of the moat and does not need to be checked again. Similarly, with

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 12 · T. Huffmire et al.

a moat width of two, checking of double lines is eliminated, and with a moat
width of six, checking of hex lines is eliminated.

4.2 Quantitative Analysis of the Gap Method

To understand the trade-offs of these two methods of constructing moats, we
first compare their costs quantitatively. For moats constructed using the gap
technique, we analyze the trade-off between circuit performance and “dead”
area. The gap technique involves restricting the use of longer segments, while
the inspection technique allows all segment lengths but performs static check-
ing instead. Since restricting the length of segments hurts performance, we
will show that smaller moats will result in worse performance than larger
moats using the gap technique, but smaller moats will result in better per-
formance using the inspection technique. For moats constructed using the in-
spection technique, we also consider the cost of checking for illegal connections
near the boundary.

On an FPGA, the delay of a route largely depends on the number of switch-
boxes that it passes through rather than the total distance that it spans. Al-
though large moats consume a great deal of chip area (because they reserve
switchboxes without making use of them to perform an operation), they allow
the design tools to make use of longer segments, which helps with the area and
performance of each individual core. On the other hand, small moats require
less chip area (for the moat itself), but restricting the routing architecture to
use only small routing segments negatively affects the area and performance
of the cores. A set of experiments is needed to understand the trade-offs be-
tween the size of the moats, the number of cores that can be protected using
moats, and the performance and area implications for moat protection.

4.2.1 The Effect of Constrained Routing Architectures. We begin by quan-
tifying the effect of constraining the tools to generate only configurations that
do not use any routing segments longer than length w. The width of the moat
could be any size, but the optimal sizes are dictated by the length of the routing
segments. As mentioned before, FPGAs utilize routing segments of different
sizes, most commonly 1, 2, 6, and long lines. If we could eliminate the long
lines, then we would require a size six moat for protecting a core. By eliminat-
ing long lines and hex lines, we only need a moat of size two, and so on.

In order to study the impact of the gap method, we compare the quality of
the MCNC benchmarks [Lisanke 1991] using different routing architectures.
We do this to model the effect of eliminating routing segments longer than the
moat width. We will use this to calculate the overall cost of employing the
gap method over differing moat widths. We use the Versatile Placement and
Routing (VPR) toolkit developed by the University of Toronto for our experi-
ments. VPR provides mechanisms for examining trade-offs between different
FPGA architectures [Betz et al. 1999]. Its capabilities to define detailed FPGA
routing resources include support for multiple-segment routing tracks and the
ability for the user to define the distribution of the different segment lengths.
It also includes a realistic cost model which provides a basis for the measure-
ment of the quality of the result.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 13

The effect of the routing architecture’s constraints on performance and area
can vary across different cores. Therefore, we route the 20 biggest applications
from the MCNC benchmark set [Lisanke 1991] using four different configu-
rations. The baseline configuration supports segments with length 1, 2, 6,
and longlines. The distribution of these segments on the routing tracks are
8%, 20%, 60%, and 12% respectively, which is similar to the Xilinx Virtex II
platform. The other three configurations are derived from the baseline con-
figurations by eliminating the segments with longer lengths. In other words,
configuration 1-2-6 will have no longlines, configuration 1-2 will support seg-
ments of length 1 and 2, and configuration 1 will only support segments of
length 1.

After performing placement and routing, we measure the quality of the rout-
ing results by collecting the area and the timing performance based on the
critical path of the mapped application. To be fair, all the routing tracks are
configured using the same tristate buffered switches with Wilton connection
patterns [Wilton 1997] within the switchbox. A Wilton switchbox provides a
good trade-off between routability and area, and is commonly used in FPGA
routing architectures.

Figures 5 and 6 show the experimental results, where we provide the hard-
ware area cost and critical path performance for all the benchmarks over four
configurations. We can see that the existence of longlines has little impact on
the final quality of the mapped circuits (compare Baseline and 1,2,6). However,
significant degradation occurs when we eliminate segments of length two and
six. This is caused by the increased demand for switchboxes, resulting in a
larger hardware cost for these additional switch resources. Moreover, the sig-
nal from one pin to another pin is more likely to pass through more switches,
resulting in an increase in the critical path timing. If we eliminate hex and
long lines, there is a 14.9% area increase and an 18.9% increase in critical
path delay, on average. If the design performance is limited directly by the
cycle time, the delay in critical path translates directly into slowdown.

4.2.2 Overall Area Impact. While the results from Figures 5 and 6 show
that there is some area impact from constraining the routing, there is also a
direct area impact in the form of resources required to implement the actual
moats themselves. Assuming that we have a fixed amount of FPGA real estate,
we really care about how much of that area is used up by a combination of the
moats and the core inflation due to restricted routing. We call this number the
effective utilization, explained in Figure 7. Specifically, the effective utilization
is as follows.

Uef f =
A AllRoutes

A RestrictedRoutes + A Moats
(2)

Figure 8 presents the trade-offs between the moat size, the number of iso-
lated cores on the FPGA, and the utilization of the FPGA. We used a large
FPGA for these calculations; one with 192 CLB rows and 116 CLB columns.
The figure examines three different moat sizes: 1, 2, and 6 for a variable
number of cores on the chip (conservatively assuming that a moat is required
around all cores). As the number of cores increases, the utilization of the FPGA

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 14 · T. Huffmire et al.

0

5

10

15

20

25

30

35

40

alu
4

ap
ex

2

ap
ex

4

bigke
y
clm

a
des

diffe
q

dsip

ell
iptic

ex
10

10

ex

5p

fri

sc

mise
x3

pdc

s2
98

s3
84

17

s3
85

84
.1 se

q
sp

la

tse
ng

av
era

ge

Benchmark

Area vs. Benchmark

M
in

 W
id

th
 T

ra
ns

is
to

r A
re

as
 x

 1
0

6
Baseline
1,2,6 (Moat Size = 6)
1,2 (Moat Size = 2)
1 (Moat Size = 1)

Fig. 5. Comparison of area for different configurations of routing segments. The baseline system
has segments with length 1, 2, 6, and longline. The distribution is close to that of Virtex II: 8% (1),
20% (2), 60% (6), and 12% (longline). Other configurations are created by eliminating one or more
classes of segments. For example, configuration 1-2-6 removes the longlines and distributes them
proportionally to other types of segments.

decreases since the area of the moats, which is unusable space, increases. How-
ever, when a small number of cores is used, a larger moat size is better because
it allows us to make more efficient use of the nonmoat parts of the chip. If you
just need to isolate a single core (from the I/O pads) then a moat of width 6 is
the best (consuming 12% of the chip resources). However, as the curve labeled
“Moat Size = 2” in Figure 8 shows, a moat width of two has the optimal effec-
tive utilization for designs that have between two and 120 cores. As a point
of reference, it should be noted that a modern FPGA can hold on the order of
100 stripped down microprocessor cores. While the number of cores is heavily
dependent on the application, and the trade-off presented here is somewhat
specific to our particular platform, our analysis method is still applicable to
other designs. In fact, as FPGAs continue to grow according to Moore’s Law,
the percent overhead for moats should continue to drop. Because the moats
are perimeters, as the size of a core grows by a factor of n, the cost of the moat
only grows by O(

√
n).

4.3 Quantitative Analysis of the Inspection Method

In this section, we analyze the inspection method. Unlike the gap method, the
inspection method can use all segment lengths for routing. This requires a
more complex method of static checking to ensure isolation. We will show that
smaller moats achieve better performance using the inspection technique. We
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 15

0

5

10

15

20

25

alu
4

ap
ex

2

ap
ex

4

bigke
y
clm

a
des

diffe
q

dsip

ell
iptic

ex
10

10

ex

5p

fri

sc

mise
x3

pdc

s2
98

s3
84

17

s3
85

84
.1 se

q
sp

la

tse
ng

av
era

ge

C
ri

ti
ca

l
P

a
th

 T
im

in
g

 (
1

0
n

s)

Benchmark

Timing vs. Benchmark
Baseline
1,2,6 (Moat Size = 6)
1,2 (Moat Size = 2)
1 (Moat Size = 1)

Fig. 6. Comparison of critical path timing for different configurations of routing segments. Unlike
Figure 8, the graphs in Figures 5 and 6 do not include the overhead of the moat itself.

also analyze the cost of performing the checking. This cost is a one-time-only
cost, since checking is performed at design time. The exception to this is the
case of systems that employ partial reconfiguration, in which some checking
must be performed at runtime.

The numbers of each type of routing segment connecting to a switchbox for
a Xilinx Virtex-II device are as follows: 16 single, 80 double, 240 hex, and
48 longlines [Xilinx, Inc. 2005]. Since hex lines account for a majority of the
connections, if we can avoid checking hex lines then there will be a significant
savings in the verification effort. However, this results in a larger moat area
to check, making less area available to use for logic on the chip. The timing
of the design may also be adversely affected since the modules will be spaced
further apart, thus giving a longer delay for signals routed between them.

Using Eq. (1), along with the number of each routing segment discussed be-
fore, we can estimate the number of connections that must be checked. The
graph in Figure 9 shows the results. Since the moat area is significantly
smaller than the area used by the cores, a larger moat size requires less check-
ing. Even though you have a larger moat area in which all connections must be
checked, the savings realized in checking the cores outweighs the cost of extra
moat area to check. The benefit of moats is even greater when you have a larger
number of cores. Having a larger number of cores will result in more overlap of
the moat space between cores. The extra overhead of having to search all the
connections in the moat is effectively divided among the cores that border the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 16 · T. Huffmire et al.

Fig. 7. Our effective utilization metric Uef f = C
A+B+C , where A is the dead area for the moats

(which depends on the number of cores), B is the inflation due to restricted routing (on the order
of 10%), and C is the useful logic with no inflation (unrestricted routing). This figure is not drawn
to scale.

Fig. 8. The trade-off between the number of cores, the size of the moat, and the utilization of the
FPGA. An increasing number of cores results in larger total moat area, which reduces the overall
utilization of the FPGA. Larger moat sizes also will use more area, resulting in lower utilization.

moats. The area of overlap between cores increases as you have more isolation
domains on the chip, resulting in greater savings in verification effort.

If you ignore the potential savings from using moats of size one or larger,
it may seem to make more sense to use seamless moats, which would allow
for the maximum possible utilization of the FPGA area. However, there are
several arguments for using a moat of size one or greater. For example, the
moat area can act as a communication channel for the routing of drawbridges
(signals between cores and I/O pins).
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 17

Fig. 9. This graph shows how many connections we must check in the switchboxes to verify our
design based on the number of isolation domains on the chip. It shows this for moat sizes of m = 0,
1, 2, and 6.

4.3.1 Benchmarks. To evaluate the performance of the inspection method,
we partitioned several different systems with moats and drawbridges. All
designs were placed and routed on a Xilinx Virtex-4 XC4VSX35-FF668-10C
device. The designs were synthesized using multipass place and route with
the effort level set to high for ten different runs.

The first test system is a distributed Multiple Input Multiple Output
(MIMO) transceiver [Mirzaei et al. 2008]. It is designed to wirelessly receive
data from a set of distributed sensor nodes over multiple channels. The design
was partitioned into four different cores: digital up converter, digital down
converter, channel tracker, and timing and frequency estimation core.

Next was the networked cryptographic authentication system [Huffmire
et al. 2008]. As previously discussed, this design contains two μBlaze proces-
sors connected to a shared onboard peripheral bus with an integrated reference
monitor to regulate access to the shared memory and peripherals. The bus had
the following slave devices: DDR SRAM, RS232, Ethernet, and AES encryp-
tion/decryption core. The system is divided into seven different cores: the AES,
RS232, DDR SRAM, Ethernet, OPB, Processor0, and Processor1.

The third system was a hardware JPEG encoder. The encoder was parti-
tioned into 5 different cores: DCT, ITU 656 data stream decoder, quantization
and rounding, run length encoder, and discrete cosine transform.

4.3.2 Experimental Results. The first question that we study is: “How
much area do the cores require?” On one hand, we could try to minimize the
rectangular area where the core resides. This will save area; however, it also
can severely restrict the physical synthesis tools. On the other hand, giving the
core too much area would be wasteful. We conducted a series of tests to under-
stand this trade-off. First, we study the relationship between utilization and
clock frequency. To study this effect, we took two designs, each with only one

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 18 · T. Huffmire et al.

Table I. The Relationship Between How Much Area a
Core is Given and the Performance of the Core

Slices utilization (%) Maximum Frequency (MHz)
μBlaze AES

50 85.21 76.49
60 83.55 69.93
72 79.11 75.71
80 81.68 70.85
90 75.55 68.24
96 76.83 69.58

Slice utilization is the total number of slices in the
area where the core is placed divided by the number
of slices that the core actually uses. This is done
for two cores, an AES encryption core, and a μBlaze
processor core.

core, and constrained the core to different size areas. The logic utilization (the
amount of slices required by the core over the total number of slices available)
was compared with the maximum clock frequency. As shown in Table I, even
at 96% slice utilization, a performance penalty of less than 10% was observed.
With less area, the physical synthesis tools are more constrained with respect
to where to place the logic. Since the tools cannot place the logic for optimal
performance, both design size and performance are impacted. In the following
experiments, we make sure to give each core enough area to limit the impact
on performance.

The performance tests for the inspection method analyzed the effect of moat
size on performance. We used several moat sizes for the four different designs
described in the previous section. To minimize the effect discussed earlier,
the cores were constrained to as large an area as possible, and when possible
cores were placed as close as possible to the I/O pins that they used. The
results of these tests can be seen in Table II. The results show that the effect
of moat size on the design is minimal. In the worst case we saw only a 2.61%
decrease in performance, and in the best case there was a 1.05% increase in
performance. Just as with regular floorplanning, if the different IP cores are
properly placed, the performance can be improved. As expected, larger moat
sizes hurt the performance because of the longer delay caused by increased
wire length between the cores.

From our performance tests, it is evident that there is a direct correlation
between moat size and performance when using the inspection method. The
larger the moat size, the greater the minimum clock period. Larger moat sizes
also require more area overhead for the moat. However, they provide a signifi-
cant reduction in the complexity of verification, which is especially important if
we want to perform runtime checking. Furthermore, the effect on performance
was minimal, with a maximum average increase of 2.61% from the baseline
case of no moat (unconstrained placement).

The impact of the moat area, however, was much more significant. In the
cryptographic design with seven cores, the moat area took up 29% of the chip
area for a moat size of six. Clearly, unless ample extra space was available on
chip, a moat size of six would not be feasible. The space-saving properties of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 19

Table II. The Relationship between Moat Size and Design Performance (T=clock
period) for Several Different Systems

Moat T % � σ T T # CLBs % Total
Size (Avg) (Min) (Max) Connections

(ns) (ns) (ns) to check
MIMO
No Moat 6.8791 N/A 0.3233 6.5 7.419 2148 N/A
0 6.8068 -1.05% 0.1546 6.532 7.025 2148 60.8%
1 6.8356 -0.63% 0.2986 6.456 7.32 2276 54.3%
2 6.9113 0.47% 0.1846 6.656 7.232 2400 48.2%
6 6.9558 1.11% 0.2258 6.61 7.343 2880 30.1%
Crypto
No Moat 13.6563 N/A 0.5605 12.838 14.533 2115 N/A
0 13.6563 0.00% 0.5605 12.838 14.533 2115 72.0%
1 13.845 1.38% 0.4349 13.273 14.586 2332 65.8%
2 13.6913 0.26% 0.496 12.99 14.258 2501 58.1%
6 13.9038 1.81% 0.4247 13.314 14.49 3213 37.5%
JPEG
No Moat 7.2 N/A 0.0868 7.021 7.342 1074 N/A
0 7.2473 0.66% 0.1103 7.081 7.446 1074 72.8%
1 7.2894 1.24% 0.1605 7.066 7.578 1212 67.2%
2 7.3861 2.58% 0.2546 7.049 7.778 1377 61.9%
6 7.3876 2.61% 0.1892 7.063 7.701 1851 46.4%

The clock period T was averaged over 10 different place-and-route runs for each
design, each run using a different seed. The percent change � in average clock
period from the baseline of no moat is shown for each design.

seamless moats makes them highly advantageous. However, this comes at the
expense of more costly verification. With the exception of systems that must
perform verification at runtime (e.g., systems that employ partial reconfigu-
ration), seamless moats are optimal, as the results in Table II show. We can
also see that the performance impact of moats constructed using the inspection
method is extremely small, and in some designs there is even a slight increase
in performance.

5. DRAWBRIDGES: INTERCONNECT INTERFACE CONFORMANCE
WITH TRACING

Our moat methodology eliminates the possibility for external cores to tap into
the information contained in a core surrounded by the moat. However, cores
do not work in isolation and must communicate with other cores to receive
and send data. Therefore, we must allow controlled entry into a core. The
entry or communication is only allowed through a prespecified interface called
a “drawbridge.” We must know in advance how the cores communicate (i.e.,
all possible connections between cores) and the location of these cores on the
FPGA. Often times, it is most efficient to communicate with multiple cores
through a shared interconnection (i.e., a bus). Again, we must ensure that
bus communications are received by only the intended recipient(s). Therefore,
we require methods to ensure that (1) communication is established only with
the specified cores and that (2) communication over a shared medium does

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 20 · T. Huffmire et al.

not result in a covert channel. In this section, we present two techniques,
interconnect tracing and a bus arbiter, to handle these two requirements.

We have developed an interconnect tracing technique for preventing unin-
tended flows of information on an FPGA. Our method allows a designer to
specify the connections on a chip, and a static analysis tool checks that each
connection only connects the specified components and does not connect with
anything else. This interconnect tracing tool takes a bitstream file and a text
file that defines the modules and interconnects. The major advantage of our
tool is that it allows us to perform the tracing on the bitstream file. We do
not require a higher-level description of the design of the core. Performing this
analysis during the final stage of design allows us to catch illegal connections
that could have originated from any stage in the design process, including sub-
version by the design tools.

In order for the tracing to work, we must know the locations of the modules
on the chip and the valid connections to/from the modules. To accomplish this
we place moats around the cores during the design phase. We now know the
location of the cores and the moats, and we use this information to specify a
text file that defines: all the cores along with their location on the chip, all I/O
pins used in the design, and a list of valid connections.

We perform tracing at the bitstream level, using the JBits API [Guccione
et al. 1999] to analyze the bitstream and check to make sure there are no
invalid connections in the design. The process of interconnect tracing is per-
formed by analyzing the bitstream to determine the status of the switchboxes.
We can use this technique to trace the path that a connection is routed along
and ensure that it goes only to valid cores. This tracing technique allows us
to ensure that the different cores can only communicate through the channels
we have specified and that no physical trap doors have been added anywhere
in the design.

The route tracing tool takes two inputs: a bitstream file and a file specifying
all modules along with their boundaries and a list of connections. Connections
are specified in terms of a source (pin or module) and destination (pin or mod-
ule). To follow is an example input file.

denotes a comment
first declare the device type
#D device
D XC2V6000 FF1517

#N modules pins connections
N 4 5 12

#M modulename xmin xmax
ymin ymax
M MB1 11 35 57 80
M MB2 11 35 13 35
M MB3 54 78 57 80
M MB4 54 78 13 35

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 21

#P pinname in/out
P B25 rst #Reset
P C36 in #rs_232_rx_pin
P J30 out #rs_232_tx_pin
P C8 in #rs_232_rx2_pin
P C9 out #rs_232_tx2_pin

#C source destination width
C B25 MB1 1
C C36 MB1 1
C MB1 J30 1
C B25 MB2 1
C MB1 MB2 32
C MB2 MB1 32
C B25 MB3 1
C MB3 C9 1
C C8 MB3 1
C B25 MB4 1
C MB4 MB3 32
C MB3 MB4 32

The tracing tool analyzes the bitstream to ensure that all connections are
valid. Connections to external pins are the simplest because the program sim-
ply starts at the pin and searches the path until it arrives at the destination
module. On the other hand, checking connections between modules is more
complicated because placement of the module during floor planning does not
place the gates and connections; it merely constrains the module to a partic-
ular region of the chip. Since we don’t have precise knowledge of where the
design tools placed the connections, the program must search the entire area
of the module for them. Searching the entire area is necessary because hex
lines and longlines can begin inside a module and end outside of it.

The tracing algorithm starts with a list of input and output pins (some pins
may be able to do both) that can enter or leave a CLB. After performing a trace
on all the input pins, it next traces all outgoing connections from all the CLBs
in the modules. Finally, it performs a reverse trace on all outgoing connec-
tions from the modules (although if the design is correct there will be none,
since the connections will have been found in the previous steps). The route
tracing algorithm is a simple breadth-first search with a few modifications: it
maintains a list of every pin it has visited to prevent searching the same path
twice. The search is terminated once another module is reached. The following
pseudocode describes the tracing process.

RouteTree trace(pin, module) {
add pin to routeTree
for all sinks of wire this pin is on {

if sink is connected to pin
if sink has already been searched

return

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 22 · T. Huffmire et al.

Table III. Performance Results of Tracing Program

Design Area(CLBs) #Connections #Gates #LUTs Time(s)
1 μBlaze 396 3 332489 1592 5.66
2 μBlaze 1050 68 663128 3153 9.7
3 μBlaze 1800 71 987631 4678 13.88
4 μBlaze 2400 135 1319492 6349 17.03
Encoder 4 12 54 9 2.26
Crypto 4200 140 780577 19150 71.53
Game 3697 92 910242 6129 22.82

if sink is in another module
check if connection is valid
return

add sink to list of searched pins
trace(sink, module)

}
}

The tracing program outputs all the connections it finds, and it can op-
tionally display the route tree showing the entire path of a connection. When
finished, it outputs whether or not the design was successfully verified.

.

.

.
Found Valid connection:MB1 to MB2
CLB.S6BEG5[57][33]
. [CLB.S6END5[51][33]]
. . CLB.S6BEG5[51][33]
. . . [CLB.S6END5[45][33]]
. . . . CLB.S6BEG3[45][33]
. [CLB.S6END3[39][33]]
. CLB.S2BEG3[39][33]
. [CLB.S2END3[37][33]]
. CLB.S2BEG1[37][33]
. [CLB.S2END_S1[34][33]]
Found Valid connection:MB3 to MB4
CLB.OMUX0[58][58]
. CLB.LV12[58][58]
. . [CLB.LV18[28][58]]
Found Valid connection:MB3 to C9
.
.
.
Design Successfully verified!

We evaluated the performance of the tracing program on several test designs
to determine how different parameters affect the runtime, using a commodity
Dell Inspiron notebook computer running Windows XP. Table III shows the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 23

results. Since these designs are not using partial reconfiguration, the analysis
can be performed offline during the design phase. Even if they use partial
reconfiguration, the reconfigurable modules can always be checked at compile
time.

If a design uses partial reconfiguration, there is an opportunity to realize
much greater efficiency. We found that it is possible to trace routes in the re-
configurable portion after the rest of the design has been verified. If a design
uses partial reconfiguration, we only have to store two pins for each connec-
tion that passes through the reconfigurable area. Connections that only enter
but do not leave the area only require us to store one pin and the direction (in
or out). In this case, we only have to search the pins that enter or leave the
module. This greatly reduces our search area, although it may add some over-
head to the initial tracing. We found that for one of the static designs (Game),
which had seventy connections passing through the reconfigurable area, the
runtime was 147 times faster (22.8161s versus 0.15485s), and the increase in
the overhead of the initial tracing of the entire chip was very small (0.0155s).

Ensuring that interconnects between modules are secure is a necessity to
developing a secure architecture. This problem is made more complicated by
the abundance of routing resources on an FPGA and the ease with which they
can be reconfigured. Our proposed interconnect tracing technique allows us to
ensure the integrity of connections on a reconfigurable device. This tool gives
us the ability to perform checking in the final design stage: right before the
bitstream is loaded onto the device.

5.1 Efficient Communication under the Drawbridge Model

In modern reconfigurable systems, busses are a common method of communi-
cation between cores. Unfortunately, the shared nature of a traditional bus
architecture raises several security issues. Malicious cores can obtain secrets
by snooping on the bus. In addition, the bus can be used as a covert channel to
leak secret data from one core to another. In the following, we propose a secure
bus architecture for FPGAs.

To address this problem of covert channels and bus snooping, we have devel-
oped a shared memory bus with a time division access. The bus divides the time
equally among the modules, and each module can read/write one word to/from
the shared memory during its assigned time slice. Our approach of arbitrating
by time division eliminates covert channels. With traditional bus arbitration,
there is a possibility of a bus-contention covert channel to exist in any shared
bus system. Via this covert channel, a malicious core can modulate its bus
references, altering the latency of bus references for other modules. This en-
ables the transfer of information between any two modules that can access the
bus [Hu 1991]. This covert channel could be used to send information from a
module with a high security label to a module with lower security label (write-
down), which would violate the Bell-LaPadula model [Bell and LaPadula 1973]
and cannot be prevented through the use of the reference monitor. To eliminate
this covert channel, we give each module an equal share of time to use the bus,
eliminating the transfer of information by modulating bus contention. Since

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 24 · T. Huffmire et al.

each module can only use the bus during its allotted time slice, it has no way
of manipulating the bus to send or infer information. One module cannot tell
if any of the other modules is using the bus. While this does limit performance
of the bus, it removes the covert channel. The only other feasible way that we
see to completely eliminate this covert channel is to give each module a dedi-
cated connection to all other modules. Requiring a dedicated direct connection
between all modules that need to communicate would be inefficient and costly.
Dedicated channels would require a worst case of O(n2) connections, where n
is the number of modules in the design. Our architecture requires only O(n)
connections.

Bus snooping is another major concern associated with a shared bus. Even
if we eliminate the covert channels there is nothing to prevent bus snooping.
For example, let us consider a system where we want to send data from one
classified module to another classified module and there are unclassified mod-
ules on the same bus. We need a way to ensure that these less trusted modules
cannot obtain this information by snooping the bus. To solve this problem, we
place an arbiter between all the modules on the bus. The modules can only
use the bus through this arbiter, which only allows each module to read during
its designated time slice. If we want to connect the bus to a memory, then a
memory monitor is also required; for this work we assume that such a configu-
ration can be implemented on the FPGA using the results of our previous work
[Huffmire et al. 2006].

5.2 Architecture Alternatives

We devised two similar architectures to prevent snooping and to eliminate
covert channels on the bus. In our first architecture, each module has its own
separate connection to a single arbiter, which sits between the shared memory
and the modules. This arbiter schedules access to the memory equally accord-
ing to a time division scheduling scheme (Figure 10). A module is only allowed
to read or write during its alloted time, and when a module reads, the data is
only sent to the module that issued the read request. The second architecture
is more like a traditional bus. In this design, there is an individual arbiter
that sits between each module and the bus. These arbiters are all connected
to a central timing module which handles the scheduling (Figure 11). The
individual arbiters work in the same way as the single arbiter in the first
architecture to prevent snooping and to remove covert channels. To make in-
terfacing easy, both of these architectures have a simple interface so that a
module can easily read/write to the shared memory without having to worry
about the timing of the bus arbiter.

During the design process, we found that the first architecture seemed eas-
ier to implement, but we anticipated that the second architecture would be
more efficient. In our first architecture (Figure 10), everything is centralized,
making the design of a centralized memory monitor and arbiter much easier
to design and verify. In addition, a single moat could be used to isolate this
functionality. Our second architecture (Figure 11) intuitively should be more
scalable and efficient since it uses a bus instead of individual connections for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 25

Fig. 10. Architecture alternative 1. There is a single arbiter, and each module has a dedicated
connection to the arbiter.

each module. However, the arbiters have to coordinate, the memory monitor
has to be split, and each arbiter needs to be protected by its own moat.

To test our hypotheses, we developed prototypes of both of the architectures.
The prototypes were developed in VHDL and synthesized for a Xilinx Virtex-
II device in order to determine the area and performance of the designs on a
typical FPGA. We did not account for the extra moat or monitor overhead. The
results of the analysis of the two architectures, which can be seen in Table IV,
were not what we first expected. During synthesis of the second architecture,
the synthesis tool converted the tristate buffers in the bus to digital logic. As
a result, the second architecture used more area than the first and only had
a negligible performance advantage. Contrary to what we expected, the first
architecture used roughly 15% less area on the FPGA and is simpler to imple-
ment and verify. Since the performance difference between the two was almost
negligible, we recommend using the first architecture. This bus architecture
allows modules to communicate securely with a shared memory and prevents
bus snooping and certain covert channels. When combined with the reference
monitor this secure bus architecture provides a secure and efficient way for
modules to communicate.

6. EFFECTIVE SCRUBBING AND REUSE OF RECONFIGURABLE HARDWARE

Modern FPGA architectures have begun to incorporate the ability to perform
partial reconfiguration of the logic and routing resources. This makes it pos-
sible to to selectively change part of the FPGA’s configuration, one column at
a time [Lysaght and Stockwood 1996]. Partial reconfiguration is performed
through a special interface on the FPGA which can read and write the bit-
stream while the FPGA is running. This interface must therefore be part of
the trusted computing base of the system.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 26 · T. Huffmire et al.

Fig. 11. Architecture alternative 2. Each module has its own arbiter that prevents bus snooping
and a central time multiplexer that connects to all the arbiters.

Table IV. Comparison of Communication Architectures

Metric Architecture 1 Architecture 2 % Difference
Slices 146 169 15.75
Flip Flops 177 206 16.38
4 Input LUTs 253 305 20.55
Max Clock Frequency 270.93 271.297 0.14

Partial reconfiguration improves the flexibility of a system by making it
possible to swap cores. For example, Lysaght and Levi [2004] have devised
a dynamically reconfigurable crossbar switch. By using dynamic reconfigura-
tion, their 928x928 crossbar uses 4,836 CLBs compared to the 53,824 CLBs
required without reconfiguration. In another example, Baker and Prasanna
[2004, 2005] have developed an intrusion detection system based on reconfig-
urable hardware that dynamically swaps the detection cores. Since the space
of intrusion detection rule sets is infinite, the space of detection cores is also
infinite. In our earlier work [Huffmire et al. 2006], we developed a memory
protection scheme for reconfigurable hardware in which a reconfigurable ref-
erence monitor enforces a policy that specifies the legal sharing of memory.
Partial reconfiguration could allow the system to change the policy being en-
forced by swapping in a different reference monitor, assuming that you could
overcome the very difficult challenge of ensuring the security and correctness
of the handover. Since the space of possible policies is infinite, the space of
possible reference monitors is also infinite.

To extend our model of moats to this more dynamic case, we need to make
sure that nothing remains of the prior core’s logic when it is replaced with
ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 27

Table V. Reconfiguration Time

Device # Frames Frame Length R/W time
(Model #) (32-bit words) (ICAP@50MHz) (1 frame)
XC2V40 404 26 5.04 μs
XC2V500 928 86 14.64 μs
XC2C2000 1456 146 24.24 μs
XC2V8000 2860 286 46.64 μs

a different core. In this section, we describe how we can enable object reuse
through configuration cleansing.

By rewriting a selective portion of the configuration bits for a certain core,
we can erase any information it has stored in memory or registers. The ICAP
(Internal Configuration Access Port) on Xilinx devices allows us to read, mod-
ify, and write back the configuration bitstream on Virtex II devices. The ICAP
can be controlled by a Microblaze soft-core processor or an embedded PowerPC
processor if the chip has one. The ICAP has an 8-bit data port and typically
runs at a clock speed of 50 MHz. Configuration data is read and written one
frame at a time. A frame spans the entire height of the device, and frame size
varies based on the device.

Table V gives some information on the size and number of frames across
several Xilinx Virtex II devices. The smallest device has 404 frames, and each
frame requires 5.04 μs to reconfigure, or equivalently, erase. Therefore, recon-
figuring (erasing) the entire device takes around 2 ms.

To sanitize a core we must perform 3 steps. First we must read in a con-
figuration frame. The second step is to modify the configuration frame so that
the flip-flops and memory are erased. The last step is to write back the mod-
ified configuration frame. The number of frames and how much of the frame
we must modify depend on the size of the core that is being sanitized. This
process must be repeated since each core will span the width of many frames.
In general, the size of the core is linearly related to the time that is needed to
sanitize it.

After the sanitization process is complete, it is a good idea to apply integrity
checks to ensure the correctness of the new design. A straightforward and ef-
ficient way to do this is to compute a checksum of the new design and compare
against a list of known good checksums [Glas et al. 2008].

To perform scrubbing, all you have to do is perform a reset per flip-flop.
Clearly, the scrubbing controller needs to be trusted since its function is highly
sensitive. For example, a malicious scrubbing module could change the recon-
figurable logic or fail to reset the logic. Each flip-flop should have a reset, and if
you need to, you can put your data back in following the reset. In order to scrub
other kinds of state, such as I/O registers, you could use a scrubbing controller.

Since partial reconfiguration increases design complexity, practitioners of-
ten avoid it, opting instead to wait a couple years for Moore’s Law to double
the number of available logic blocks. In addition to increasing design complex-
ity, the security analysis is also more complicated with partial reconfiguration.
Another limitation is that enabling partial reconfiguration disables bitstream
decryption mechanisms. If this were not done, any encrypted bitstream could

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 28 · T. Huffmire et al.

be obtained via the ICAP interface. To overcome this problem it is possible
to use a reconfigurable crypto core together with the ICAP interface to pro-
tect the bitstream [Harper et al. 2003]. Many of the features of PlanAhead
were originally developed to enable partial reconfiguration, and our moats and
drawbridges work exploits some of them. However, PlanAhead does not per-
form checking similar to our tracing algorithm.

7. APPLICATION: MEMORY POLICY ENFORCEMENT

Now that we have described a set of isolation and separation primitives, we
provide an example of utilizing these primitives to perform memory protec-
tion, an even higher-level primitive. Saltzer and Schroeder [1974] identify
three key elements that are necessary for protection: “Conceptually, then, it is
necessary to build an impenetrable wall around each distinct object that war-
rants separate protection, construct a door in the wall through which access
can be obtained, and post a guard at the door to control its use.” In addition,
the guard must be able to identify the authorized users. In the case of pro-
tecting cores, our moat primitive is analogous to the wall, and our drawbridge
primitive is analogous to the door. Our interconnect tracing and secure bus
primitives act as the guard.

One way of protecting memory in an FPGA system is to use a reference
monitor that is loaded onto the FPGA along with the other cores [Huffmire
et al. 2006]. Here, the reference monitor is analogous to the guard because it
decides the legality of every memory access according to a policy. This requires
that every access go through the reference monitor. We can use our isolation
primitives to ensure that this is the case. For example, we can surround the
reference monitor with a moat, specify the allowable connections using draw-
bridges, then use interconnect tracing to ensure that the memory I/O blocks
are only connected to the reference monitor. Without these primitives, it is
easy for a core to bypass the reference monitor and access memory directly.

Saltzer and Schroeder [1974] describe how protection mechanisms can pro-
tect their own implementations in addition to protecting users from each other.
Protecting the reference monitor from attack is critical to the security of the
system, but the fact that the reference monitor itself is reconfigurable makes
it vulnerable to attack by the other cores on the chip. However, moats can
mitigate this problem by providing physical isolation of the reference monitor.

Our isolation primitives also make it harder for an unauthorized informa-
tion flow from one core to another to occur. Establishing a direct connection
between the two cores would clearly thwart the reference monitor. Using
moats and drawbridge makes it impossible to connect two cores directly with-
out crossing the moat.

As we described earlier, a reference monitor approach to memory protection
requires that every memory access pass through the reference monitor. How-
ever, cores are connected to each other and to main memory by means of a
shared bus. As we explained in Section 5.1, the data on a shared bus is visible
to all cores. Our secure bus primitive protects the data flowing on the bus by
controlling the sharing of the bus with a fixed time division approach.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 29

A memory protection system that allows dynamic policy changes requires
an object reuse primitive. It is often useful for a system to be able to respond
to external events. For example, during a fire, all doors in a building should
be unlocked without exception (a more permissive policy than normal), and
all elevators should be disabled (a less permissive policy than normal). In the
case of an embedded device, a system under attack may wish to change the
policy enforced by its reference monitor. There are several ways to change
polices. One way is to overwrite the reference monitor with a completely dif-
ferent one. Our scrubbing primitive can ensure that no remnants of the earlier
reference monitor remain. Since cores may retain some information in their
local memory following a policy change, our scrubbing primitive can also be
used to cleanse the cores.

8. RELATED WORK

There has always been an important relationship between the hardware a sys-
tem runs on and the security of that system, and reconfigurable systems are no
different. In addition to the related work we have already mentioned, we build
on the ideas of reconfigurable security, IP protection, secure update, covert
channels, direct channels, and trap doors. While a full description of all prior
work in these areas is not possible, we highlight some of the most relevant.

8.1 Reconfigurable Hardware Security

To provide memory protection on an FPGA, we proposed the use of a recon-
figurable reference monitor that enforces the legal sharing of memory among
cores [Huffmire et al. 2006]. A memory access policy is expressed in a special-
ized language, and a compiler translates this policy directly to a circuit that
enforces the policy. The circuit is then loaded onto the FPGA along with the
cores. While our work addressed the specifics of how to construct a memory
access monitor efficiently in reconfigurable hardware, we did not address the
problem of how to protect that monitor from routing interference, nor did we
describe how to enforce that all memory accesses go through this monitor. This
article directly supports our prior work by providing the fundamental prim-
itives that are needed to implement memory protection on a reconfigurable
device.

There is similar concurrent work by McLean and Moore [2007]. Though they
do not provide extensive details, they appear to be using a similar technique
to isolate regions of the chip by placing a buffer between them which they call
a fence.

Trimberger [2007] explains how FPGAs address the trusted foundry prob-
lem. When an ASIC is manufactured, the sensitive design could be stolen by
malicious employees of the foundry. For defense sensitive content, this issue
concerns the national interest. Although FPGAs address this problem for the
fabrication phase, the design could be stolen from the FPGA itself by circum-
venting bitstream protection mechanisms. ASICs are also susceptible to theft
of the design after fabrication.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 30 · T. Huffmire et al.

Since techniques that make ASIC circuits resistant to side-channel attacks
do not necessarily translate to FPGAs, Yu and Schaumont [2007] have de-
veloped a routing technique to reduce the risk of side-channel attacks on
FPGAs. Their technique involves creating a duplicate circuit that has sym-
metrical power consumption to cancel out the original circuit. Our work could
be used in conjunction with this technique to provide a higher level of security.

Chien and Byun [1999] address the safety and protection concerns of en-
hancing a CMOS processor with reconfigurable logic. Their design achieves
process isolation by providing a reconfigurable virtual machine to each process,
and their architecture uses hardwired TLBs to check all memory accesses. Our
work could be used in conjunction with theirs, using soft-processor cores on top
of commercial off-the-shelf FPGAs rather than a custom silicon platform. In
fact, we believe one of the strong points of our work is that it may provide a
viable implementation path to those that require a custom secure architecture,
for example, execute-only memory [Lie et al. 2000] or virtual secure coprocess-
ing [Lee et al. 2005].

Gogniat et al. [2006] propose a method of embedded system design that im-
plements security primitives such as AES encryption on an FPGA, which is
one component of a secure embedded system containing memory, I/O, CPU, and
other ASIC components. Their Security Primitive Controller (SPC), which is
separate from the FPGA, can dynamically modify these primitives at runtime
in response to the detection of abnormal activity (attacks). In their work, the
reconfigurable nature of the FPGA is used to adapt a crypto core to situational
concerns, although the concentration is on how to use an FPGA to help effi-
ciently thwart system-level attacks rather than chip-level concerns. Indeed,
FPGAs are a natural platform for performing many cryptographic functions
because of the large number of bit-level operations that are required in mod-
ern block ciphers. However, while there is a great deal of work centered around
exploiting FPGAs to speed cryptographic or intrusion detection primitives, sys-
tems researchers are just now starting to realize the security ramifications of
building systems around hardware which is reconfigurable.

Most of the work relating to FPGA security has been targeted at the prob-
lem of preventing the theft of intellectual property and securely uploading bit-
streams in the field. Because such attacks directly impact their bottom line,
industry has already developed several techniques to combat the theft of FPGA
IP, such as encryption [Bossuet et al. 2004; Kean 2001; 2002], fingerprinting
[Lach et al. 1999a], and watermarking [Lach et al. 1999b]. However, estab-
lishing a root of trust on a fielded device is challenging because it requires a
decryption key to be incorporated into the finished product. Some FPGAs can
be remotely updated in the field, and industry has devised secure hardware
update channels that use authentication mechanisms to prevent a subverted
bitstream from being uploaded [Harper et al. 2003; Harper and Athanas 2004].
These techniques were developed to prevent an attacker from uploading a ma-
licious design that causes unintended functionality. Even worse, the malicious
design could physically destroy the FPGA by causing the device to short-circuit
[Hadzic et al. 1999]. However, these authentication techniques merely ensure

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 31

that a bitstream is authentic. An “authentic” bitstream could contain a sub-
verted core that was designed by a third party.

8.2 Covert Channels, Direct Channels, and Trap Doors

The work in Section 5.1 directly draws upon the existing work on covert chan-
nels. Exploitation of a covert channel results in the unintended flow of infor-
mation between cores. Covert channels work via an internal shared resource,
such as power consumption, processor activity, disk usage, or error conditions
[Standaert et al. 2003; Percival 2005].

We are not the first to propose security enhancements for SoCs employing
a bus communication architecture. Coburn et al. [2005] propose a Security
Enforcement Module (SEM) that provides stateful policy enforcement and re-
source arbitration, including memory protection. However, they do not address
the problem of covert timing channels resulting from bus contention.

Classical covert channel analysis involves the articulation of all shared re-
sources on chip, identifying the share points, determining if the shared re-
source is exploitable, determining the bandwidth of the covert channel, and
determining whether remedial action can be taken [Kemmerer 1983]. Storage
channels can be mitigated by partitioning the resources, while timing channels
can be mitigated with sequential access, a fact we exploit in the construction
of our bus architecture. Examples of remedial action include decreasing the
bandwidth (e.g., the introduction of artificial spikes (noise) in resource usage
[Saputra et al. 2003]) or closing the channel. Unfortunately, an adversary can
extract a signal from the noise, given sufficient resources [Millen 1987].

Of course, our technique is primarily about restricting the opportunity for
direct channels and trap doors [Thompson 1984]. Our memory protection
scheme is an example of this. Without any memory protection, a core can leak
secret data by writing the data directly to memory. Another example of a direct
channel is a tap that connects two cores. An unintentional tap is a direct chan-
nel that can be established through luck. For example, the place-and-route
tool’s optimization strategy may interleave the wires of two cores.

9. CONCLUSION

The design of reconfigurable systems is a complex process, consisting of mul-
tiple software tool chains that may have different trust levels. Composing a
trustworthy system from untrusted components remains an open challenge in
computer security. The tools necessary for high-assurance FPGA system devel-
opment do not yet exist. Our methods represent an initial attempt at verifying
security properties of FPGA designs. In particular, we described a set of primi-
tives that can be used to isolate trusted cores from the effects of the subversion
or failure of other cores in the system.

We have presented a protection scheme called moats and drawbridges that
provides separation of multiple cores on an FPGA. Moats isolate the cores,
and drawbridges facilitate their controlled interaction. We have presented
two alternative methods of implementing moats. The gap method uses physi-
cal/spatial isolation and restricts the use of longer routing segments, while the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 32 · T. Huffmire et al.

inspection method uses logical isolation and static checking instead. We have
shown that the inspection method results in better performance than the gap
method. We have also described how moats and drawbridges can be used in
conjunction with a reference monitor to provide memory protection.

There are many opportunities for future work. To provide for heterogeneous
provisioning of bandwidth for our TDMA bus architecture, we plan to inves-
tigate the application of lattice scheduling [Hu 1992], in which a core can
“donate” its unused time to a core with a higher security label in a round-
robin fashion.

Some of our security techniques are applicable to other kinds of devices be-
sides FPGAs, such as Chip Multi-Processors (CMPs). For example, we would
like to extend our drawbridge model to support Networks-on-Chip (NoCs) to
provide efficient and secure communication among many cores. There are sev-
eral open research questions in the design of NoCs, and techniques for incor-
porating security into the design of NoCs by enhancing the network interface
are starting to emerge [Diguet et al. 2007; Florin et al. 2007a; 2007b].

ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers for their comments.

REFERENCES

ADEE, S. 2008. The hunt for the kill switch. IEEE Spectrum 45, 5.
BAKER, Z. AND PRASANNA, V. 2004. Efficient architectures for intrusion detection. In Proceedings

of the 12th Annual International Conference on Field-Programmable Logic and its Applications
(FPL’04).

BAKER, Z. AND PRASANNA, V. 2005. Computationally-Efficient engine for flexible intrusion de-
tection. IEEE Trans. VLSI.

BELL, D. AND LAPADULA, L. 1973. Secure Computer Systems: Mathematical Foundations and
Model. The MITRE Corporation, Bedford, MA.

BETZ, V., ROSE, J. S., AND MARQARDT, A. 1999. Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic, Boston, MA.

BONDALAPATI, K. AND PRASANNA, V. 2002. Reconfigurable computing systems. Proc. IEEE 90,
7, 1201–1217.

BOSSUET, L., GOGNIAT, G., AND BURLESON, W. 2004. Dynamically configurable security for
SRAM FPGA bitstreams. In Proceedings of the 18th International Parallel and Distributed
Processing Symposium (IPDPS’04).

CHIEN, A. AND BYUN, J. 1999. Safe and protected execution for the Morph/AMRM reconfigurable
processor. In Proceedings of the 7th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines.

COBURN, J., RAVI, S., RAGHUNATHAN, A., AND CHAKRADHAR, S. 2005. SECA: Security-
Enhanced communication architecture. In Proceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES’05).

COMPTON, K. AND HAUCK, S. 2002. Reconfigurable computing: A survey of systems and software.
ACM Comput. Surv. 34, 2, 171–210.

DEHON, A. AND WAWRZYNEK, J. 1999. Reconfigurable computing: What, why, and implications
for design automation. In Proceedings of the Design Automation Conference. 610–15.

DIGUET, J., EVAIN, S., VASLIN, R., GOGNIAT, G., AND JUIN, E. 2007. NOC-Centric security of
reconfigurable SoC. In Proceedings of the 1st International Symposium on Networks-on-Chip
(NOCS’07).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 33

FIORIN, L., PALERMO, G., LUKOVIC, S., AND SILVANO, C. 2007a. A data protection unit for
NoC-based architectures. In Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS’07).

FIORIN, L., SILVANO, C., AND SAMI, M. 2007b. Security aspects in networks-on-chips: Overview
and proposals for secure implementations. In Proceedings of the 10th Euromicro Conference on
Digital System Design Architectures, Methods, and Tools (DSD’07).

GLAS, B., KLIMM, A., SANDER, O., MULLER-GLASER, K., AND BECKER, J. 2008. A system
architecture for reconfigurable trusted platforms. In Proceedings of the Conference on Design,
Automation, and Test in Europe (DATE).

GOGNIAT, G., WOLF, T., AND BURLESON, W. 2006. Reconfigurable security support for embedded
systems. In Proceedings of the 39th Hawaii International Conference on System Sciences.

GUCCIONE, S., LEVI, D., AND SUNDARARAJAN, P. 1999. JBits: Java-Based interface for recon-
figurable computing. In Proceedings of the 2nd Annual Conference on Military and Aerospace
Applications of Programmable Logic Devices and Technologies (MAPLD).

HADZIC, I., UDANI, S., AND SMITH, J. 1999. FPGA viruses. In Proceedings of the 9th International
Workshop on Field-Programmable Logic and Applications (FPL’99).

HARPER, S. AND ATHANAS, P. 2004. A security policy based upon hardware encryption. In Pro-
ceedings of the 37th Hawaii International Conference on System Sciences.

HARPER, S., FONG, R., AND ATHANAS, P. 2003. A versatile framework for FPGA field updates:
An application of partial self-reconfiguration. In Proceedings of the 14th IEEE International
Workshop on Rapid System Prototyping.

HILL, T. 2006. AccelDSP synthesis tool floating-point to fixed-point conversion of MATLAB algo-
rithms targeting FPGAs. http://www.digchip.com/application-notes/9/43439.php.

HU, W. 1992. Lattice scheduling and covert channels. In Proceedings of the IEEE Symposium on
Research in Security and Privacy.

HU, W.-M. 1991. Reducing timing channels with fuzzy time. In Proceedings of the IEEE Computer
Society Symposium on Research in Security and Privacy.

HUFFMIRE, T., BROTHERTON, B., CALLEGARI, N., VALAMEHR, J., WHITE, J., KASTNER, R., AND

SHERWOOD, T. 2008. Designing secure systems on reconfigurable hardware. ACM Trans. Des.
Autom. Electron. Syst. 13, 3.

HUFFMIRE, T., BROTHERTON, B., WANG, G., SHERWOOD, T., KASTNER, R., LEVIN, T., NGUYEN,
T., AND IRVINE, C. 2007. Moats and drawbridges: An isolation primitive for reconfigurable hard-
ware based systems. In Proceedings of the IEEE Symposium on Security and Privacy.

HUFFMIRE, T., PRASAD, S., SHERWOOD, T., AND KASTNER, R. 2006. Policy-Driven memory pro-
tection for reconfigurable systems. In Proceedings of the European Symposium on Research in
Computer Security (ESORICS).

JAIN, A., KOPPEL, D., KALIGIAN, K., AND WANG, Y.-F. 2006. Using stationary-dynamic camera
assemblies for wide-area video surveillance and selective attention. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.

KASTNER, R., KAPLAN, A., AND SARRAFZADEH, M. 2004. Synthesis Techniques and Optimiza-
tions for Reconfigurable Systems. Kluwer Academic, Boston, MA.

KEAN, T. 2001. Secure configuration of field programmable gate arrays. In Proceedings of the 11th
International Conference on Field Programmable Logic and Applications (FPL’01).

KEAN, T. 2002. Cryptographic rights management of FPGA intellectual property cores. In Proceed-
ings of the 10th ACM International Symposium on Field-Programmable Gate Arrays (FPGA’02).

KEMMERER, R. 1983. Shared resource matrix methodology: An approach to identifying storage
and timing channels. ACM Trans. Comput. Syst. 1, 3, 256–277.

KOCHER, P., LEE, R., MCGRAW, G., RAGHUNATHAN, A., AND RAVI, S. 2004. Security as a new
dimension in embedded system design. In Proceedings of the 41st Design Automation Conference
(DAC’04).

LACH, J., MANGIONE-SMITH, W., AND POTKONJAK, M. 1999a. FPGA fingerprinting techniques
for protecting intellectual property. In Proceedings of the IEEE Custom Integrated Circuits
Conference.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

10: 34 · T. Huffmire et al.

LACH, J., MANGIONE-SMITH, W., AND POTKONJAK, M. 1999b. Robust FPGA intellectual
property protection through multiple small watermarks. In Proceedings of the 36th ACM/IEEE
Conference on Design Automation (DAC’99).

LEE, R., KWAN, P., MCGREGOR, J., DWOSKIN, J., AND WANG, Z. 2005. Architecture for protect-
ing critical secrets in microprocessors. In Proceedings of the 32nd International Symposium on
Computer Architecture (ISCA).

LEWIS, J. AND MARTIN, B. 2003. Cryptol: High assurance, retargetable crypto development and
validation. In Proceedings of the Military Communications Conference (MILCOM).

LIE, D., THEKKATH, C., MITCHELL, M., LINCOLN, P., BONEH, D., MITCHELL, J., AND

HOROWITZ, M. 2000. Architectural support for copy and tamper resistant software. In Proceed-
ings of the 9th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IX).

LISANKE, B. 1991. Logic synthesis and optimization benchmarks. Tech. rep., Microelectronics
Center of North Carolina.

LYSAGHT, P. AND LEVI, D. 2004. Of gates and wires. In Proceedings of the 18th International
Parallel and Distributed Processing Symposium.

LYSAGHT, P. AND STOCKWOOD, J. 1996. A simulation tool for dynamically reconfigurable field
programmable gate arrays. IEEE Trans. VLSI Syst. 4, 3.

MANGIONE-SMITH, W., HUTCHINGS, B., ANDREWS, D., DEHON, A., EBELING, C.,
HARTENSTEIN, R., MENCER, O., MORRIS, J., PALEM, K., PRASANNA, V., AND SPAANENBURG,
H. 1997. Seeking solutions in configurable computing. Comput. 30, 12, 38–43.

MCLEAN, M. AND MOORE, J. 2007. Securing FPGAs for red/black systems: FPGA-Based single
chip cryptographic solution. Military Embedded Systems Mag.

MILLEN, J. 1987. Covert channel capacity. In Proceedings of the IEEE Symposium on Security and
Privacy.

MIRZAEI, S., KASTNER, R., IRTURK, A., WEALS, B., AND CAGLEY, R. 2008. Design space ex-
ploration of a cooperative MIMO receiver for reconfigurable architectures. In Proceedings of
the IEEE International Conference Application-Specific Systems, Architectures and Processors
(ASAP).

NIU, W., LONG, J., HAN, D., AND WANG, Y.-F. 2004. Human activity detection and recognition for
video surveillance. In Proceedings of the IEEE Multimedia and Expo Conference.

PERCIVAL, C. 2005. Cache missing for fun and profit. In BSDCan 2005.
RUSHBY, J. 1981. Design and verification of secure systems. ACM SIGOPS Oper. Syst. Rev. 15, 5.
RUSHBY, J. 1984. A trusted computing base for embedded systems. In Proceedings of the 7th

DoD/NBS Computer Security Conference. 294–311.
RUSHBY, J. 1999. Partitioning in avionics architectures: Requirements, mechanisms, and assur-

ance. NASA contractor rep. CR-1999-209347, NASA Langley Research Center.
SALTZER, J. AND SCHROEDER, M. 1974. The protection on information in computer systems.

Commun. ACM 17, 7.
SAPUTRA, H., VIJAYKRISHNAN, N., KANDEMIR, M., IRWIN, M., BROOKS, R., KIM, S., AND

ZHANG, W. 2003. Masking the energy behavior of DES encryption. In Proceedings of the IEEE
Design Automation and Test in Europe (DATE’03).

SCHAUMONT, P., VERBAUWHEDE, I., KEUTZER, K., AND SARRAFZADEH, M. 2001. A quick
safari through the reconfiguration jungle. In Proceedings of the Design Automation Conference.
172–177.

SENIOR, A., PANKANTI, S., HAMPAPUR, A., BROWN, L., TIAN, Y.-L., AND EKIN, A. 2003. Blink-
ering surveillance: Enabling video privacy through computer vision. Tech. rep. RC22886, IBM.

STANDAERT, F., OLDENZEEL, L., SAMYDE, D., AND QUISQUATER, J. 2003. Power analysis of
FPGAs: How practical is the attack? Field-Program. Logic Appl. 2778, 701–711.

THE MATH WORKS INC. 2006. MATLAB User’s Guide.
THOMPSON, K. 1984. Reflections on trusting trust. Commun. ACM 27, 8.
TRIMBERGER, S. 2007. Trusted design in FPGAs. In Proceedings of the 44th Design Automation

Conference.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

Security Primitives for Reconfigurable Hardware-Based Systems · 10: 35

WEISSMAN, C. 2003. MLS-PCA: A high assurance security architecture for future avionics. In
Proceedings of the Annual Computer Security Applications Conference. IEEE Computer Society,
Los Alamitos, CA, 2–12.

WILTON, S. 1997. Architectures and algorithms for field-programmable gate arrays with embed-
ded memory. Ph.D. thesis, University of Toronto.

XILINX INC. 2005. Virtex-II Platform FPGAs: Complete Data Sheet. Xilinx Inc., San Jose, CA.
XILINX INC. 2006. Getting started with the embedded development kit (EDK).

http://www.xilink.com/support/documentation/sw manuals/edk821 getstarted.pdf.
YU, P. AND SCHAUMONT, P. 2007. Secure FPGA circuits using controlled placement and routing.

In Proceedings of the International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS’07).

Received April 2008; revised October 2008; accepted March 2009

ACM Transactions on Reconfigurable Technology and Systems, Vol. 3, No. 2, Article 10, Pub. date: May 2010.

